Erratum to Affine Manifolds, Syz Geometry and the “y” Vertex

نویسنده

  • JOHN LOFTIN
چکیده

We prove the existence of a solution to the Monge-Ampère equation detHess(φ) = 1 on a cone over a thrice-punctured two-sphere. The total space of the tangent bundle is thereby a Calabi-Yau manifold with flat special Lagrangian fibers. (Each fiber can be quotiented to three-torus if the the affine monodromy can be shown to lie in SL(3,Z)⋉ R .) Our method is through Baues and Cortés’s result that a metric cone over an elliptic affine sphere has a parabolic affine sphere structure (i.e., has a Monge-Ampère solution). The elliptic affine sphere structure is determined by a semilinear PDE on CP minus three points, and we prove existence of a solution using the direct method in the calculus of variations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Affine Manifolds, Syz Geometry and the “y” Vertex

We study the real Monge-Ampère equation in two and three dimensions, both from the point of view of the SYZ conjecture, where solutions give rise to semi-flat Calabi-Yau’s and in affine differential geometry, where solutions yield parabolic affine sphere hypersurfaces. We find explicit examples, connect the holomorphic function representation to Hitchin’s description of special Lagrangian modul...

متن کامل

ar X iv : m at h / 04 05 06 1 v 1 [ m at h . D G ] 4 M ay 2 00 4 AFFINE MANIFOLDS , SYZ GEOMETRY AND THE “ Y ” VERTEX

We study the real Monge-Ampère equation in two and three dimensions, both from the point of view of the SYZ conjecture , where solutions give rise to semi-flat Calabi-Yau's and in affine differential geometry, where solutions yield parabolic affine sphere hypersurfaces. We find explicit examples, connect the holo-morphic function representation to Hitchin's description of special Lagrangian mod...

متن کامل

HyperKähler Manifolds and Birational Transformations

The minimal model program has greatly enhanced our knowledge on birational geometry of varieties of dimension 3 and higher. About the same time, the last two decades have also witnessed increasing interests in HyperKähler manifolds, a particular class of Calabi-Yau manifolds. One interest in this area, which we hope to treat in the future, is to investigate the behavior of the SYZ mirror conjec...

متن کامل

Doran–Harder–Thompson Conjecture via SYZ Mirror Symmetry: Elliptic Curves

We prove the Doran–Harder–Thompson conjecture in the case of elliptic curves by using ideas from SYZ mirror symmetry. The conjecture claims that when a Calabi– Yau manifold X degenerates to a union of two quasi-Fano manifolds (Tyurin degeneration), a mirror Calabi–Yau manifold of X can be constructed by gluing the two mirror Landau– Ginzburg models of the quasi-Fano manifolds. The two crucial i...

متن کامل

Mirror Symmetry for Toric Fano Manifolds via Syz Transformations

We construct and apply Strominger-Yau-Zaslow mirror transformations to understand the geometry of the mirror symmetry between toric Fano manifolds and Landau-Ginzburg models.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008